71 research outputs found

    Fuzzy model-based design for testing and qualification of additive manufacturing components

    Get PDF
    The uncertainties and variation of additive manufacturing (AM) material properties and their impact on product quality trouble designers. The lack of experience in AM technologies renders the experts\u27 assessment of AM components and the establishment of safety margins difficult. Consequently, unexpected qualification difficulties resulting in expensive and lengthy redesign processes might arise. To reduce the risk of qualification failure, engineers might perform copious time-consuming and expensive specimen testing in early phases, or establish overconservative design margins, overriding the weight reduction benefits of AM technologies. In this article, a model-based design method is proposed for the conceptual design of AM space components with affordable test phases. The method utilizes fuzzy logics to systematically account for experts\u27 assessment of AM properties variation, and to provide an early estimation of a product qualification likelihood related to design parameters of interest, without the need for copious testing. The estimation of qualification likelihood can also point out which are the unique AM material uncertainties that require further specific testing, to enable the design of a product with a better performance and more affordable test phases. The method is demonstrated with the design for AM gridded of ion thrusters for satellite applications

    Design space exploration of a jet engine component using a combined object model for function and geometry

    Get PDF
    The design of aircraft and engine components hinges on the use of computer aided design (CAD) models and the subsequent geometry-based analyses for evaluation of the quality of a concept. However, the generation (and variation) of CAD models to include radical or novel design solutions is a resource intense modelling effort. While approaches to automate the generation and variation of CAD models exist, they neglect the capture and representation of the product’s design rationale—what the product is supposed to do. The design space exploration approach Function and Geometry Exploration (FGE) aims to support the exploration of more functionally and geometrically different product concepts under consideration of not only geometrical, but also teleological aspects. The FGE approach has been presented and verified in a previous presentation. However, in order to contribute to engineering design practice, a design method needs to be validated through application in industrial practice. Hence, this publication reports from a study where the FGE approach has been applied by a design team of a Swedish aerospace manufacturers in a conceptual product development project. Conceptually different alternatives were identified in order to meet the expected functionality of a guide vane (GV). The FGE was introduced and applied in a series of workshops. Data was collected through participatory observation in the design teams by the researchers, as well as interviews and questionnaires. The results reveal the potential of the FGE approach as a design support to: (1) Represent and capture the design rationale and the design space; (2) capture, integrate and model novel solutions; and (3) provide support for the embodiment of novel concepts that would otherwise remain unexplored. In conclusion, the FGE method supports designers to articulate and link the design rationale, including functional requirements and alternative solutions, to geometrical features of the product concepts. The method supports the exploration of alternative solutions as well as functions. However, scalability and robustness of the generated CAD models remain subject to further research

    Cost-efficient digital twins for design space exploration: A modular platform approach

    Get PDF
    The industrial need to predict the behaviour of radically new products brings renewed interest in how to set up and make use of physical prototypes and testing. However, conducting physical testing of a large number of radical concepts is still a costly approach. This paper proposes an approach to actively use digital twins in the early phases where the design can be largely changed. The approach is based on creating a set of digital twin modules that can be reused and recomposed to create digital twin variants. However, this paper considers that developing a digital twin can be very costly. Therefore, the approach focuses on supporting the decisions about the optimal mix of modules, and about whether a new digital twin module should be developed. The approach is applied to an industrial case derived from the collaboration with two space manufacturers. The results highlight how the design of the modular platform has an impact on the cost of the digital twin, if commonality and reusability aspects are considered. These results point at the cost-efficiency of applying a modular approach to digital twin creation, as a means to reuse the results from physical testing to validate new designs and their ranges of validit

    Stringed Magic Enchants Andrews

    Get PDF
    https://digitalcommons.andrews.edu/sm-103/1006/thumbnail.jp

    Modelling Flexibility and Qualification Ability to Assess Electric Propulsion Architectures for Satellite Megaconstellations

    Get PDF
    The higher satellite production rates expected in new megaconstellation scenarios involve radical changes in the way design trade-offs need to be considered by electric propulsion companies. In relative comparison, flexibility and qualification ability will have a higher impact in megaconstellations compared to traditional businesses. For these reasons, this paper proposes a methodology for assessing flexible propulsion architectures by taking into account variations in market behavior and qualification activities. Through the methodology, flexibility and qualification ability can be traded against traditional engineering attributes (such as functional performances) in a quantitative way. The use of the methodology is illustrated through an industrial case related to the study of xenon vs. krypton architectures for megaconstellation businesses. This paper provides insights on how to apply the methodology in other case studies, in order to enable engineering teams to present and communicate the impact of alternative architectural concepts to program managers and decision-makers

    WORKING AGILE TO SPEED UP RESEARCH WITH INDUSTRY: FIVE INDEPENDENCE PRINCIPLES

    Get PDF
    One of the obstacles to the ability of research to make an impact on industry resides on the research process itself. Today, there is a need to accelerate the means for research to support industrial transformation. At the same time, there is the need to maintain scientific rigorousness, which often requires time. To solve this trade-off, this paper evaluates existing research approaches through the lenses of agile development. The analysis is based on a simulation of research process architectures, and on observations made over several research projects with industry. The results of this analysis highlight five light-but-sufficient rules of research project behavior to keep momentum, motivation and trust when doing research with industry. The paper demonstrates the use of these five rules in a research sprint conducted iwith two automotive OEMs

    Connecting functional and geometrical representations to support the evaluation of design alternatives for aerospace components

    Get PDF
    Novel product concepts are often down-selected in favour of the incremental development of available designs. This can be attributed to the fact that for the development of a new product, simulations and analysis based on high-fidelity CAD models are required, which are expensive to create. To solve this problem, the use of a function model (FM) as intermediate step between ideation and embodiment is suggested. The approach has been examined in a case study with an aerospace company for the development of a turbine rear assembly, using multiple workshops and interviews with practitioners from the company. A multitude of novel solutions, even extending the functionality of the legacy design, were captured. The FM approach proved to support the representation, analysis, and configuration of 102 different concepts. Although supported by the FM model, the embodiment still showed to be a bottle neck for further development. The subsequent interviews with practitioners showed that the benefits of the approach were seen, but experienced as too complex. Further work will concern a more systematic connection between the FM and CAD model, in order to automate of the embodiment process

    Exploring the Potential of Digital Twin-Driven Design of Aero-Engine Structures

    Get PDF
    As the diversity of customer needs increases within the aerospace industry, so does the need for improved design practices to reduce quality issues downstream. When designing new products, design engineers struggle with applying tolerances to features, which often leads to expensive late design iterations. To mitigate this, one aerospace company is looking to reuse tolerance deviation data yielded during manufacturing in design. In the long term these data could provide the basis for a Digital Twin that can be used for improved product development. This article explores how data from production are used today, what issues prevents such data from being exploited in the design phase, and how they potentially could be used for design purposes in the future. To understand the current situation and identify the untapped potential of production data in design, an interview study was conducted in conjunction with a literature review. In this paper the current situation and primary barriers are presented and a possible path for further research and development is suggested

    Function model-based generation of CAD model variants

    Get PDF
    A product is an artefact which fulfils a specific function. However, most design automation (DA) approaches wich are used to generate multiple alternative design concepts focus on the generation of CAD models. These neglect to represent the functional aspects of the product, and are furthermore deemed too rigid for the introductino of novel solutions. Pure function modellingappraoches on the other hand provides methods such as design rationale representation, introduction of novel solutions or instantiation of combinatorial alternative concepts, but the resulting models are insufficient for analysis. To alleviate this, a design space exploration (DSE) approach which couples function modelling and CAD is presented. The approachlinks the product’s design rationale modelled in enhanced functionmeans (EF-M) to a DA approach via the here introduced object model for function and geometry (OMFG). The resulting method is able to automatically generate CAD models of alternative concepts based on combinations of alternative design solutions defined in the function model. The approach is presented through a case study of an aircraft engine component. Sixteen different concepts are generated based on four functions with alternative solutions. In an initial computation of the effort to generate all alternative concepts, the DA aspect of the approach’s effort pays off as soon as five functions have two or more alternative solutions. Beyond the benefit of efficient instantiation of CAD models of alternative product concepts, the approach promises to provide the design rationale behind each concept, and thereby a more systematic way of exploring and evaluating alternative design concepts

    Interactive model-based decision-making tools in early product platform design

    Get PDF
    Integrating new technologies in existing product platforms presents challenges not only when the decision of going ahead with the integration is taken, but also in the earlier design of the platform structure to accommodate hypothetical changes in the future. Common heuristics do no guarantee that the optimum solution can be found to these kinds of problems, and biases lead to systematic distortions in decision-making. Additionally with the global zeitgeist around sustainable development, decision makers will increasingly ask for paths to many different versions of success, not just the traditional profit maximization one. A set of common models that accompanies the product platform all through its lifecycle to support decision makers can enable better fulfilment of the expectations of all stakeholders. But it is difficult to unify and objectively gather the views of multiple stakeholder simultaneously. An interactive modelbased decision making support system is proposed as a tool to solve the mentioned challenges. In this paper we describe and experiment with the main technological foundations of such a tool. These include an web-based front end, and a real-Time NoSQL database in the back end. The client web application (webapp) enables user inputs, runs quantitative models, and visualizes results. The database records results and enables the use of common inputs and common visualization of the results. The models that run directly in the client are developed offline and can be continuously deployed with no downtime for concurrent users. The technology stack used demonstrates that rapid prototyping of tools using state-of-The-Art web technologies provides quick results and enables researchers to make quick iterations that can be easily deployed in industrial use cases. The presented method is a new approach to providing digital support to the design process, by enabling better informed decisions during the product development process early phases. In this paper, an introduction and background to the problem and current state of the art is summarized, a method to approaching the topic is described, an experiment performed in front of a life audience is presented, and hints for future developments are considered in the discussion and conclusion sections
    • …
    corecore